

ECONOMIC BENEFIT OF DATA CENTERS

Florida is poised to become a leader in the nation's growing digital economy through data center investment. **The development of a single one-gigawatt (GW) data center represents a multi-billion-dollar opportunity** to create jobs, generate tax revenue, and strengthen communities - all while requiring minimal new infrastructure or public cost.

Job Creation: Construction of a 1 GW data center creates approximately 45,367 temporary jobs, producing \$2.4 billion in earnings and \$176.8 million in state and local tax revenue within 18 months. Once operational, the facility supports 5,322 high-paying, permanent positions in IT, engineering, and operations, offering stable, long-term employment opportunities across the region.

Competitive Wages: These roles generate \$292 million in annual earnings, well above local averages and helping boost household income statewide. The broader impact includes \$2.6 billion in yearly economic activity and \$405.8 million in recurring state and local tax revenue, driven by suppliers, contractors, and small businesses that support data center operations.

Sustained Community Growth: Data centers support long-term local stability by strengthening essential services and economic resilience — without increasing traffic congestion, housing demand, or other community pressures.

SUCCESS STORIES ACROSS THE U.S.

Loudoun County, VA: Known as "Data Center Alley," these facilities now generate nearly half of all property tax revenue. For every \$1 in public services, the county earns \$26 in return, funding an additional \$111.8 million for schools this year.

Coweta County, GA: A proposed data center is projected to bring \$163 million in annual tax revenue — exceeding the county's entire operating budget.

Grant County, WA: Property tax revenues have climbed 1,277% to \$54 million. The town of Quincy used its share to build a new school, hospital, and fire station, while reducing its levy rate by 70%.

Phoenix, AZ: Data center development represents over \$10B in capital investment, generating \$863M in state and local tax revenue.

THE VALUE OF DATA CENTERS

DRIVING U.S. COMPETITIVENESS

China is investing heavily to advance new technologies, expand computing, and position itself at the forefront of artificial intelligence. In the U.S., we lean on our free market approach, empowering American entrepreneurs and innovators to move faster and adapt more effectively than centralized governments. This strategy has long been a defining strength of our nation.

Yet, to secure America's leadership in the AI era, we must also ensure the infrastructure is in place to support rapid growth. The expansion of hyper-scale data centers is essential to:

Powering Prosperity

- Large-scale data centers create **thousands of construction jobs** and **thousands of permanent high-wage jobs** in IT, engineering, and operations.
- Data centers generate **billions in annual economic impact** and **millions in tax revenue** for schools, infrastructure, and public services.
- **Local communities benefit** from expanded services, utility demand, and long-term growth, without straining existing infrastructure.

In Loudon County, VA, data centers generate almost half of the county's property tax revenues. For every \$1 in services the county provides to data centers, the county receives \$26 in revenue. This has allowed the county to invest in schools - \$111.8 million more than last year.

Strengthening Energy & Infrastructure

- Data centers partner with utilities to modernize the grid, balancing natural gas, nuclear, renewables, and advanced technologies.
- Developers are pioneering new solutions like **microgrids, behind-the-meter generation**, and **small modular reactors** for more resilient power supply.
- These innovations not only support AI but also improve electric reliability for families and businesses.

Security & Resilience

- Domestic data centers reduce reliance on foreign infrastructure and keep sensitive data under **U.S. jurisdiction**.
- Strict U.S. cybersecurity and energy standards protect against foreign threats and grid vulnerabilities.
- A strong, reliable digital infrastructure is essential to **national security and defense readiness**.

Policy Matters

- States that support balanced energy portfolios and streamlined permitting are **attracting more investment**.
- Excessive regulations, siting restrictions, and energy bans create barriers to growth and **risk economic stagnation**.
- Forward-looking state and local leadership is essential to seize the opportunity.

BOTTOM LINE

Data centers are sources of innovation, prosperity, security, and reliability. With smart policy and investment, they can help America lead the AI era while delivering real benefits to communities across Florida and the nation.

FLORIDIANS VALUE DATA CENTERS FOR THE ECONOMIC IMPACT, JOB CREATION AND NATIONAL SECURITY BENEFITS

Support For Data Centers Grows With Knowledge And Information

The more Floridians learn about data centers, the more they support expansion of data centers in the Sunshine State

- There's limited knowledge and understanding about data centers. **58% of Republican voters statewide admit they are unfamiliar.**
- Republican voters support the expansion of data centers by a **14-point margin** (34 to 20%), but nearly half of survey respondents are initially undecided (46%).
- Support for the expansion of data centers **climbs substantially when they're presented with benefits** framed around schools, tax revenue, economic competitiveness and national security.
- **After learning more** about data centers, a majority of Republican voters in Florida (**55%**) **support the expansion of data centers**, compared to just 24% who oppose.

Republican voters in Florida support the expansion of data centers for the benefits they will bring to our communities, our economy and our national security

- **57%** of respondents were more likely to **support** the expansion **after learning data centers generate millions in local tax revenue**. In one Georgia County, data centers are projected to **double** local tax revenue for schools and roads without adding new strain on services. Florida communities could see similar benefits.
- **58%** of respondents were more likely to **support** the expansion after learning data centers have an incredible economic impact. In Georgia, they've contributed more than **\$25 billion to the state's economy, \$1.8 billion in tax revenue** and created more than **175,000 jobs**.
- **56%** of respondents were more likely to **support** the expansion after **learning data centers will help America win the AI race against China**, which is essential to global economic dominance and national security.

Republican voters in Florida trust their friends, neighbors and colleagues

- Everyday Floridians (13%) and local leaders (11%) are top trusted spokespeople.
- Utilities (5%) and teachers/professors (5%) are less trusted sources.

DATA CENTERS IN FLORIDA: POWERING PROGRESS RESPONSIBLY

Talking Points for Community Members and Advocates

American Competitiveness

- Bringing large-scale data centers to Florida isn't just about innovation— it's about **national security and economic competitiveness**.
- If we want **to maintain our position as a global powerhouse, we need more domestic data infrastructure**. Data centers drive innovation in AI, cloud computing, and large-scale data processing, accelerating breakthroughs in science and technology.
- **Florida has a real opportunity** to position our state as a national leader in security, innovation, and economic sustainability.

American Prosperity

- **Data centers are powerful job creators**. They bring both short-term construction roles and long-term, high-paying careers in engineering, operations, and IT.
 - **A single one-gigawatt data center** in Florida could create more than **45,000 construction jobs and 5,000 permanent operations roles** - with nearly **\$300 million** in sustained annual earnings once the facilities are up and running.
 - **We've seen it elsewhere**: Facebook's data center in Georgia supported over 1,000 construction jobs and now employs 100 full-time staff. Google's center in Iowa continues to support hundreds of local vendors.
- Beyond jobs, data centers transform economies. They generate billions in investment, boost local tax revenue, and strengthen communities without straining services.
 - In Florida, that same one-gigawatt data center could deliver **\$2.6 billion in annual economic impact and over \$400 million in new state and local tax revenue** — helping fund schools, first responders, and infrastructure.
 - In Georgia, **data centers have doubled local tax revenue for schools and roads**. Microsoft's facility in Washington brought in \$20 million for local improvements. Florida could see similar results.

Electric Reliability

- **Data centers** don't just power the Internet — they also help **keep the lights on**.
- By **partnering with local energy companies and investing** in advanced technology, **they help modernize the grid and make electricity more reliable** for Florida families and businesses.

American Security

- Building and operating data centers here at home **strengthens national security**. Domestic data centers reduce reliance on foreign infrastructure, ensuring that sensitive data remains under U.S. jurisdiction and control.
- U.S.-based data centers adhere to strict national cybersecurity standards, **reducing vulnerabilities to foreign attacks**.

SAMPLE COMMUNICATIONS TO LOCAL AND STATE LEADERS

Sample Letter: Policy Priorities for Sustainable Growth

[ORG NAME] supports policies that welcome the **responsible growth of data centers** in Florida, which are **critical to our economy, our national security and our electric reliability**. Building on Governor DeSantis' [extension](#) of Florida's sales tax exemption for large-load data centers, which covers purchases related to construction, maintenance, power and operations, **we advocate for cost recovery frameworks that protect consumers from higher energy bills** by ensuring hyperscale data centers bear the costs and risks of their energy demands. These measures will drive sustainable economic growth, reinforce energy resilience and strengthen national security.

Sample Newsletter: How Data Centers Strengthen Florida's Energy Future

China is investing heavily in advanced technology, racing to dominate the future of computing and artificial intelligence (AI). America's advantage lies in our free-market approach, where innovation is accelerated by competition, driven by entrepreneurs and more adaptable than top-down approaches. Yet, to maintain this advantage, **we must build and protect the infrastructure that supports innovation, starting with data centers.**

Hyperscale data centers create thousands of permanent, high-paying jobs and generate billions in economic impact each year. Their impact goes beyond tech, producing millions in tax revenue that directly support schools, roads and communities, without increasing demand on local services.

In **Loudoun County, Virginia, data centers supply nearly half of all property tax revenue**. For every dollar invested in services for these data centers, the county receives \$26 in return, **equivalent to more than \$100 million annually**. The boost of revenue has been reinvested in the community with greater support for public schools, law enforcement and community services. The shift enabled the county to lower property tax rates for homeowners to some of the lowest in northern Virginia.

To power this growth sustainably, hyper-scale data centers collaborate with utilities to transform the electric grid. **By integrating renewable energy sources, small modular reactors and microgrids, they reduce strain and improve efficiency.**

Sound policies that guide cost recovery and energy management ensure growing demand does not translate into higher costs for customers.

Data centers are sources of innovation, prosperity, security and reliability. With smart policy and investment, they can help America lead the AI era while delivering real benefits to communities in Florida and across the nation.

SETTING THE RECORD STRAIGHT: THE FACTS ABOUT FLORIDA'S DATA CENTERS

Water Usage

- **Concern:** Data centers consume large amounts of water for cooling, creating a strain on local water systems.
- **Reality:** Modern data centers use highly efficient cooling technologies that have significantly reduced water use, such as air-cooled, closed-loop and hybrid systems. In fact, today's facilities often consume water at levels comparable to other commercial and residential developments, while delivering far greater economic benefits and fewer overall community impacts. Some even repurpose wastewater, offering a solution to mitigate pollution.

Energy Demand

- **Concern:** Data centers are power-intensive, raising fears of grid overload and higher utility rates for businesses and residents.
- **Reality:** Data center energy needs are forecasted and contracted years in advance, enabling utilities to expand capacity deliberately and efficiently. All costs associated with transmission, generation, interconnections and substations are fully covered by the project itself, protecting other customers from higher rates. Utilities, in turn, benefit from stable, predictable demand, which enhances reliability and reduces operational risks.
- **Further Context:** In one [example](#), a utility in Georgia was able to freeze customer rates for three years (no increases through 2028) due to the stability offered by the growth of data centers in the region.

Visual & Community Impact

- **Concern:** Expansive, windowless structures could disrupt landscapes and the rural character of communities.
- **Reality:** Appropriate site selection is critical; data centers are purposefully located far from residential communities in rural or existing industrial areas. The facilities are one- and two-story structures serving as unobtrusive neighbors that generate far fewer vehicle trips, no emissions from smokestacks, and negligible noise compared to warehouses, distribution centers or factories. Thoughtful design elements, including generous setbacks, earthen berms, evergreen screening and subdued facades, help them integrate seamlessly into industrial zones.
- **Further Context:** Adherence to dark-sky lighting standards minimizes light pollution, while enclosed mechanical systems and timed, soundproofed generator tests control noise. Data center operators frequently collaborate on community enhancements like beautification efforts, expanded landscaping and public amenities, solidifying their status as subtle, beneficial contributors.

Land Use

- **Concern:** Data centers claim vast land areas that could otherwise support housing, retail or alternative industries.
- **Reality:** Data centers **yield the highest tax revenue per acre** among industrial uses, with low demands on public services, such as limited school enrollments, reduced traffic and minimal emergency response needs. Further, data centers are enduring, tax-generative assets with 40+ year lifespans.
- **Further Context:** As foundational elements of the digital economy, data centers draw complementary industries like cloud services, logistics, research facilities and renewable energy developers, amplifying long-term economic growth.

Climate & Extreme Weather

- **Concern:** Intense storms, floods or hurricanes could interrupt operations, risking taxpayer burdens and community vulnerabilities.
- **Reality:** Built with **robust, storm-resistant engineering to endure 200 mph winds**, storm surges, and flooding, data centers boast exceptional redundancy in power and connectivity, including dual utility feeds, onsite backups and diversified telecom paths.
- **Further Context:** Their **ability to maintain operations during crises preserves a steady tax revenue stream for localities**, preventing fiscal shortfalls. Also, these high-resilience standards elevate benchmarks for surrounding utilities, serving as exemplars that enhance overall regional preparedness against extreme weather.

Fiscal Incentives

- **Concern:** Local governments might offer incentives or tax abatements that shortchange public finances.
- **Reality:** Unlike most industrial projects, **data centers fund all necessary grid improvements themselves**, including transmission lines and substations. Incentives, when offered, are typically short-term and gradually phase out, while long-term property tax revenue and ongoing equipment upgrades continue for decades. Even with abatements exceeding 80%, **the proposed data center would still become the county's single largest taxpayer**.
- **Further Context:** Rigorous analyses, such as those from Virginia, reveal **data centers return \$13 to \$26 in revenue for every \$1 in public service costs**—even after incentives. Operators often formalize community benefit agreements to support workforce training, STEM education and emergency services, delivering shared prosperity well beyond fiscal contributions.

Noise Pollution

- **Concern:** Constant low-frequency hums from cooling systems and generators can disrupt quality of life, cause vibrations and lead to health issues like sleep disturbances or stress.
- **Reality:** Modern data centers are **engineered to minimize noise**. They use sound-attenuating walls, enclosed mechanical systems and advanced noise-dampening designs to keep sound levels well within local limits. Backup generators are tested only occasionally—typically once a month for brief periods—and always within permitted hours using soundproof enclosures.

- **Further Context:** Industry standards limit noise to 50–60 decibels at property lines, comparable to a quiet office. Data center operators often conduct pre-construction noise studies and offer community monitoring programs to address concerns proactively.

Visual & Community Impact

- **Concern:** Expansive, windowless structures could disrupt landscapes and the rural character of communities.
- **Reality:** Appropriate site selection is critical; data centers are purposefully located far from residential communities in rural or existing industrial areas. The facilities are one- and two-story structures serving as **unobtrusive neighbors that generate far fewer vehicle trips, no emissions from smokestacks, and negligible noise**